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Abstract. Simulated Annealing is a family of randomized algorithms used to solve many com-
binatorial optimization problems. In practice they have been applied to solve some presumably hard
(e.g., NP-complete) problems. The level of performance obtained has been promising [2,5,6,14]. The
success of this heuristic technique has motivated analysis of this algorithm from a theoretical point
of view. In particular, people have looked at the convergence of this algorithm. They have shown (see
e.g., [10]) that this algorithm converges in the limit to a globally optimal solution with probability

1. However few of these convergence results specify a time limit within which the algorithm is
guaranteed to converge (with some high probability, say). We present, for the first time, a simple
analysis of SA that will provide a time bound for convergence with overwhelming probability. The
analysis will hold no matter what annealing schedule is used. Convergence of Simulated Annealing
in the limit will follow as a corollary to our time convergence proof. In this paper we also look at
optimization problems for which the cost function has some special properties. We prove that for
these problems the convergence is much faster. In particular, we give a simpler and more general
proof of convergence for Nested Annealing, a heuristic algorithm developed in [12]. Nested An-
nealing is based on defining a graph corresponding to the given optimization problem. If this graph
is ‘small separable’, they [12] show that Nested Annealing will converge ‘faster’. For an arbitrary
optimization problem, we may not have any knowledge about the ‘separability’ of its graph. In this
paper we give tight bounds for the ‘separability’ of a random graph. We then use these bounds
to analyze the expected behavior of Nested Annealing on an arbitrary optimization problem. The
‘separability’ bounds we derive in this paper are of independent interest and have the potential of
finding other applications.

1. Introduction
1.1. BASIC IDEAS

Simulated Annealing (abbreviated as SA) is a heuristic algorithm proposed by
Kirkpatrick et al. [7] for solving combinatorial optimization problems like the trav-
elling salesman problem etc. This randomized algorithm was derived in analogy
with a physical system, say, a fluid. Annealing is used to bring a fluid to a low
energy state. The idea of SA is to use a procedure similar to annealing to find the
minimum value of a given cost function. SA makes use of the Metropolis algorithm
for computer simulation of annealing.

Annealing a substance involves melting the substance at a very high temperature
and then cooling it slowly. At each temperature sufficient time should be given for
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the system to reach a steady state. The lower the temperature, the higher the time
given should be. SA imitates this procedure by first identifying the correspondence
between the fluid and the optimization problem, and then using the Metropolis
algorithm to simulate each step of annealing.

Each basic step of Metropolis’ simulation amounts to perturbing the value of
one of the variables by a small amount. If the new configuration has a lower cost,
the configuration will be accepted. If the new configuration has a higher cost, even
then it will be accepted with certain probability.

SA algorithm is repeated application of the above basic step until no more
improvement in the cost function is possible. As evident, SA allows hill climbing
from local optima.

1.2. PREVIOUS WORK

Many researchers have attempted to analyze the performance of SA by assuming
a mathematical model for it. The most popular model assumed is a (time inhomo-
geneous) Markov chain. Typical convergence proof [10] involved proving that the
probability state vector of the Markov chain converges in the limit to an ‘optimal
stationary probability state vector’ with probability 1. An optimal stationary prob-
ability state vector is one in which the only non-zero entries correspond to globally
optimal states of the Markov chain. There are also results which compute the rate
of convergence of the probability state vector to the optimal vector. Such results
are extremely important from a theoretical point of view since they provide an
explanation for why SA works in practice.

However none of these convergence proofs gives a time bound for convergence.

1.3. CONTENTS OF THIS PAPER

This paper analyzes the worst case convergence time of SA. In particular, we show
that SA converges in timé/ (n, d, D) with probability > (1 — n=%®). Heren

is the number of stated) is the diameter, and is the degree of the underlying
Markov chain.M(.) is a function to be specified later. By convergence we mean
that the Markov chain had been in a globally optimal state at least once. We don’t
require the state probability vector to converge to an optimum vector.

Since the objective in combinatorial optimization is to find the optimum value
of a given cost function, perhaps our definition of convergence is more appropriate
from a computational point of view. If we can keep track of the state with the
minimum cost visited so far by the Markov chain, our objective will be achieved.

We also show that faster convergence is possible in the case of cost functions
with some special properties. For cost functions which are ‘small separable’ faster
convergence has already been proved by Rajasekaran and Reif (see [12]). They call
their algorithm ‘Nested Annealing’ (abbreviated as NA). In fact we also consider
the same class of cost functions and give a simpler proof to the convergence of Nes-
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ted Annealing. Also their proof applies only to problems for which SA algorithm
converges in time polynomial in the number of states (of the corresponding Markov
chain), whereas our proof applies to any problem.

NA employs the following idea. Given any optimization problem, define a cor-
responding graph. If this graph is known to be ‘small separable’, then NA leads to
‘faster’ convergence. Numerous other algorithms have also been designed which
exploit the ‘small separability’ of the underlying graphs (see e.g., [8]). But, given
an arbitrary problem, we may not know how ‘separable’ its graph is. In this paper
we prove tight bounds on the ‘separability’ of a random graph. We make use of
these ‘separability’ bounds to analyze the expected behavior of NA on an arbitrary
optimization problem.

The ‘separability’ bounds derived here are of independent interest and have the
potential of finding other applications. For example, we could study the expected
behavior of the algorithms given in [8] on arbitrary graphs.

1.4. SOME DEFINITIONS AND PRELIMINARIES

SAis a class of randomized algorithms in the sense of Rabin [11], and Solovay &
Strassen [13]. Traditional approaches to introducing randomness in algorithms was
done assuming certain distribution for possible inputs. Average case analysis of any
algorithm will be performed based on this assumption on the inputs. This average
case performance measure can be totally misleading in the case of applications
where the input distribution assumed does not hold. To rectify this problem Ra-
bin [11], and Solovay and Strassen [13] proposed introducing randomness in the
algorithm itself. An algorithm employing this technique is called a ‘randomized
algorithm’.

To be more precise, a randomized algorithm is one which makes coin flips to
make certain decisions. A randomized algorithm will be shown to have a certain
performance measure with ‘*high probability’ (this probability will be over the
space of all possible outcomes for coin flips made in the algorithm and not over
the space of all possible inputs).

We say a randomized algorithm has a resource (like time, space, etc.) bound of
O(f (n)) if there exists a constantsuch that the resource used by the algorithm is
no more tharra f (n) on any input of size:, with probability > (1 — n™%).

An Optimization Problenis to find the minimum value of a given ‘cost func-
tion’ C(.) of n parameterp, po, ... , p., Subject to some given constraints.

If X is any non-negative random variable with mganMarkov’s inequality
(see e.g., [3]) implies that Prob.[> ku] < 1/k, for anyk > O.

2. A Model for SA

In this section we state the mathematical model to be used for SA. Before doing
S0, we give a description of the SA algorithm itself.



46 S. RAJASEKARAN

Given a cost functiof (p1, p2, ... , pa), aconfigurationor stateof the Optim-
ization Problem (abbreviated as OP) is defined to be an assignment of values to its
n parameters. ‘Neighbors’ of a given state are all those states which differ from the
given state only in the value of one parameter by a ‘small’ amount. ‘Temperature’
in the case of an OP is simply a control parameter which has the same units as that
of the cost function.

procedureAnneal(start_state, start_temperature);
while (notfrozen)do

while (not steadystategio
Generate a random neighbor of the current state;
Let A = cost of old state- cost of the new state;
Accept the new state with probability mjih exp) — A/T)},
T being the current temperature;

Update the temperature; steadystatéalse;

In the above algorithm ‘frozen’ is a boolean variable that becomeswhen
no improvement in the given cost function has been observed in a ‘long’ time (say
during the past few temperatures). The boolean variable ‘steadystate’ bettoenes
when the system attains steady state at the given temperature.

Many schemes (also called ‘annealing schedules’) have been proposed to com-
pute the sequence of temperatures the system should go through. For example, the
temperature can be decreased by a constant factor each time. For other annealing
schedules see [10].

One can construct a directed gra@hV, E) corresponding to a given OP in the
following way: Nodes inG are simply the states of the OP and the edges going out
of any node (or state) will be the neighbors of this state. As the reader can easily
see, SA algorithm performs a random walk on this graph. State transition made at
any step is dependent only on the current state. Also for a given temperature, the
transition probabilities from out of any node are fixed. These facts suggest model-
ling SA as a Markov chain. At any given temperature SA can be modeled as a time
homogeneous Markov chain. But the transition probabilities can potentially change
with temperature. Thus the whole of SA can be modeled as a time inhomogeneous
Markov chain [10]. We assumé€ is strongly connected (i.e., there is a directed
path fromi to j for any two nodeg and; in V).

For any node in G, let N(i) be the set of neighbors of and letC (i) be the
cost of state. If we assume that when the Markov chain is in stateach one
of its |N(i)| neighbors is equally likely to be generated next, then, the transition
probability from state to state; at temperaturd, P;;(T), is given by

0 if j & N(i)&j # i

P = S min(L expl(C (i) - Can/TY i j € NG
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and

Pi(T)y=1- " Py(T)

JEN()

We make use of this model to prove the convergence time of SA.

3. Convergence of SA

We say the SA algorithm has converged if the underlying Markov chain had been
in a globally optimal state at least once. This definition of convergence is different
from what other researchers have assumed. So far, only the convergence of the
probability state vector to an optimal vector has been considered (see e.g. [10]). Our
definition of convergence is more appropriate from a computational point of view,
since we are only interested in finding the minimum value of a given cost function.
Convergence as defined here guarantees that we will find the global minimum of
the given function.

In this section we give a time bound within the SA algorithm will converge.
Given a cost functio (p1, po, ... , pn), letG(V, E) be its state graph (as defined
before). LetT be the minimum temperature that SA was ever in. AlsoAet=
maXxecy, jeni){C (i) — C(J)}. Denote the degree and diametefV, E) by d and
D respectively.

Clearly, for anyi € V, P;; (at any temperature) will be at least €xpA/T)
if j € N(i). We state a few crucial facts before we present and prove the main
theorem.

FACT 3.1. Let X be the state of a Markov chain at time= #y. The probability that
a global minimum state is visited during the ngxsteps (for any; is dependent
only onX andg and not on the states visited before.

LEMMA 3.1. If X is any state inV, then the expected number of steps before a
global optimal state is visited starting from is < (% exp(—A/T))P.

Proof. Let g be any global optimal state. Then there exists a directed path from
XtoginG(V, E)oflengthg < D. Letey, e, ... , ¢, be the sequence of edges in
the path.

Clearly, probability thaiG is visited starting fromX is at least the probability
that each one of the edges 1 < i < ¢ is traversed in succession. The later
probability is at leasf(3) exp(—A/T)17 > [(3) exp(—A/T)]”, (assuming that
each neighbor of a sate is equally likely to be generated next).

Therefore, probability thag will ever be visited starting fronX is > [(1/d)
exp(—A /T)]P. This implies that the expected number of steps befdsevisited is

< [dexp(A/TH[P. =

THEOREM 3.1. SA converges in time< 2k[d exp(A/T)]P, with probability
> (1— 27%), no matter what the start state is.
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Proof. Let E = 2[d exp(A/T)]P. We prove that the probability of a global
optimal stateg not being visited ik E steps is< 27, by induction ork.

Induction Hypothesis. Irrespective of the start state, probability ghiat not
visited inkE steps is< 27*,

Base case. Wheh = 1, for any start stat&, expected number of steps before
g isvisited is < E/2 (using lemma 3.1). An application of Markov’s inequality
implies that the probability of not being visited starting fronX in E steps is
< 1l/2.

Induction step Assume the hypothesis for all < (r — 1). We'll prove the
hypothesis fok = r.

Let Xg, X2, ... , X(—1)r be the states of the Markov chain during time steps
E, 2E, ..., (r — 1)E respectively. LetA be the eventyg is not visited during the
first E steps, and be the eventy is not visited during the next — 1) E steps.

Now, probability thatg is not visited inr E steps,P, is given by

P = Prob[B/A] x Prob[A].

Using fact 3.1, PropB/A] depends only on what state the Markov chain is in at
time stepE and the time duratio — 1) E. And hence,

P = Prob[A] ) " Prob[B/Xy = i] x Prob[Xp = i].

ieV

But, ProbjA] is < 1/2 and ProjB/ X = i]is < 2=~V for eachi € V (using
the induction hypothesis). Therefore, we have,

P < %2‘("1) =27, 0

COROLLARY 3.1. If A, T, andd are assumed to be constants abe-=0(log|V |),
then, SA converges in time polynomial ¥ with probability > (1 — 2-¢0VD),

Observation The above analysis is oblivious to the annealing schedule used.
Even if the system stays in the same temperature throughout, as long as enough
time is given, the system will converge.

The success of any heuristic technique depends on how good the input is. If the
heuristic is good on all possible inputs, then it will be termed an ‘exact algorithm’.
This fact is true in the case of SA also.

In practice, SA has been used to obtain ‘quasi optimal’ solutions by running
it for only a small amount of time (in comparison with the time bound given in
theorem 3.1). A plausible reason for this behavior is there are many quasi optimal
states (for a large fraction of all possible inputs) in the Markov chain and these
states are nearly uniformly distributeddn(V, E). If we have some knowledge of
how many quasi optimal states there are, and how they are distributed 1 E),
we can make use of the above analysis technique to get tighter bounds on the
convergence time.
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Also, the above proof assumes that each neighbor of a state is equally likely to
be generated next. This is not a severe restriction. The analysis can be extended
easily even to the case where this assumption is invalid as we show now.

In some applications, it may be necessary to generate certain neighbors with
higher probability. Mitra et al. [10] assume that the probability of generating state
j from statei is ﬁ whereg(i, j) is the ‘weight’ of j as a neighbor of andg (i)
is a normalizing function such th@jeN(l.) g(i, j) = g(@@). Under this assumption
the state transition probabilities become:

0 if j ¢ N()&j # i

86D min(L, expl(C(j) — C(0)/ T} if j € N(i)

P;(T) =

and

Pi(T)=1- Y Py;(I).
JEN(@)

If p=minicy jena % for the above general model we can prove a convergence

result similar to the one given by Theorem 3.1. We can prove the following

THEOREM 3.2. SA algorithm converges in timg 2k[% exp(A /T)1P with prob-
ability > (1 — 27%), no matter what the start state is.

4. Cost Functions with Special Properties

Rajasekaran and Reif [12] have shown that if the cost function being optimized
is ‘small separable’, then faster convergence can be obtained. They call their al-
gorithm ‘Nested Annealing’. In this section we give a simpler proof of convergence
of Nested Annealing. Their convergence proof holds only for problems for which
SA converges in time polynomial in the number of states of the OP. However, our
proof generalizes it to any problem. We make a few definitions before presenting
the proof.

4.1. DEFINITIONS

We say a graplG; (V, E) with n nodes is $(n)-separable’ if there exist constants
a < 1, 8 > 0 such thaty can be partitioned into three subs&ts S, V,. Also, no
vertex inVy is adjacent to any vertex i, both| V| and| V5| are less thaan, and
|S| is less tharBs(n). Moreover, the induced subgraphs@fon vV, and onV; are
s(|V1])-separable and(V,)- separable, respectively. will be referred to as ‘the
separator set’ or simply ‘the separator’. Intuitively, by eliminating (the nodes in)
from G we end up with two roughly equal disjoint subgraphs.

If C is a cost function on parameterpy, po, ... , p,, we define ‘separability’
of C as follows. WriteC asC = C1+ C2+ - - - + Cy, where eaclt; is a product of
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functions of the parameters. Call ea€h 1 < i < k as a clause. Define a bipartite
graphG¢(V, E) whose nodes are the parameters and the clauses. There is an edge
between a clause node and a parameter node if that parameter occurs in that clause.
G is called the ‘graph o€’. We sayC is s(n)-separable ilG is.

An Example The problem of CNF-satisfiability is: given a boolean formula
in conjunctive normal formF, on n variables, we have to decide if there is an
assignment to the variables that will makdrue. The graph corresponding to this
problem will consist of nodes one for each variable and each clause. There is an
edge between a clause node and a variable node if and only if that variable occurs
in that clause.

Small separability (i.e., smafln)) of a cost function implies that by assigning
values to a small number of parameters we can obtain two independent subprob-
lems such that the parameters involved in one subproblem are disjoint from the
parameters of the other subproblem.

4.2. THE ALGORITHM

Given a cost functiorC on then parameterga, p», ... , p., construct the graph
of C, G¢(V, E). If G¢ is s(n)-separable, we can partitidn into V3, S, andV;, as
mentioned above.

In this section we assume each parameter is binary (i.e., can take on only two
possible values). The analysis we perform is applicable with some minor changes
to other cases as well. One way of computing the minimum val@gisas follows.

For each possible assignment of values to parameteidiimd the minimum value
of C, and pick the minimum of these minima. Finding the minimumCoéinder

a particular assignment fdf, is easy now. We need to find the minimum of two
functionsC, andC, whereC; involves only parameters froii; and C, involves
only parameters fronv,.

Let G1(V1, E1) andG2(V,, E,) be the restrictions of; on V; and V, respect-
ively. Finding the minimum ofC,; and C, can be done recursively by finding
separators fo6; andG, respectively.

At the top level, we are given a s&tfor which we need to find an ‘optimum’
assignment (an assignment that corresponds to a global minimuf).foYe can
think of this as an OP of| parameters. There are thus/ 2< 28 states of the
OP. The cost of each state is the minimunCofinder that particular assignment to
S. Instead of considering each possible state of this OP, and computing the cost of
each state, we can run a Simulated Annealing algorithm on this OP Wity (n)
parameters.

SA algorithm, in practice, only visits a small fraction of all possible states of
the OP to come up with a quasi-optimal solution. Therefore, if we use SA on the
above OP with S| parameters, the number of states visited will be much less than
2%s™ and hence the run time of the overall recursive algorithm will be much less.
This is the whole idea behind Nested Annealing.
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Next we give a formal description of the algorithm followed by a simpler proof
of convergence.

procedureNested_Annealing(6(V, E));
Find a separator sétfor G¢. Let V4, S, andV, be the partition ofV.
Also let G; and G be restrictions of5 on V; andV, respectively.
Find an optimal assignment férby running an SA algorithm on these para-
meters. For each state of the corresponding Markov chain visited by SA we
need to compute the cost.
To compute this cost, we need to find minimum of two other functi©nand
C, (see the discussion above). EaclCgfandC; involves < an parameters.
Find these two minima recursively by finding separatorsGerand G, re-
spectively.

Analysis Let T'(n) be the expected run time of Nested_Annealing to find a
global optimal solution on any OP withparameters. To obtain an upper bound on
T (n), we need to know how many of thé’2states at the top level will be visited
(including repeated visits) by the corresponding SA algorithm, and on each state
visited the time needed to compute the cost of the state. Y&t 8tand for the
worst case run time of SA on any OP withparameters. (In section 3 we have
given upper bounds on"2"). Then, clearly, the number of states visited will be
no more than Z#s),

Computing the cost of each state involves computing the minimum of two
other functions involving no more tham parameters each, accounting for a total
expected cost ok 2T (an).

Thus, we have,

which solves to
T(n) < 221'():91” M(ﬁs(ain))‘

If s(n) is assumed to b& (n?) for somes < 1, we have

T(n) < 2VMEs@) — QOMBs)

Herey < ﬁ Throughout we have used the fact that the expected value of the
sum of any random variables is the sum of the expected values of the individual
random variables.

Let L = 2vM#Bs) Probability that the run time of Nested_Annealing exceeds
kL is less than 1km using Markov’s inequality. Thus we have the following

THEOREM 4.1. Nested_Annealing converges in tim€ n* L with probability
=z 1d=n"").

For problems withM (n) = O(n), we have the following
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COROLLARY 4.1. If M(n) is O(n), Nested_Annealing converges in timg
n*2°6™) with probability > (1 — n~%).

The above corollary has already been proven in [12].

We can strengthen theorem 4.1 in the following way. Probability that the conver-
gence time of Nested_Annealing exceedsi < 1/2. Makek logn independent
runs of the procedure and terminate each procedure after exactly 2L steps. Pick the
minimum of the minima found in the lggruns. Probability that none of the runs
finds the global minimum is< 2%, Thus we have the following

THEOREM 4.2. Nested_Annealing converges in tim€ 2kL with probability
> (1 —27%) (for anyk > 0).

A number of important problems like planar travelling salesman, planar satis-
fiability, etc. (which have been proven to be NP-complete) héwe= ,/n. For all
these problems Nested_Annealing converges in tifi¥ 8v") whereas SA has
a convergence time of?2¥ ™),

Even though the above analysis gives the time needed to find the global optimal
value in the worst case, we can also make use of it to get estimates of time bounds
to obtain quasi optimal solutions. I#2? is an estimate on the run time of SA to
obtain a quasi optimal solution of any OP witlparameters, then theorem 4.2 can
be interpreted as implying that for the same problem Nested_Annealing will run in
time ZO(M(,BS(")))

5. Separability of Random Graphs

All the algorithms that exploit the separability of the underlying graphs presuppose
that a separator is known for the given graph. There are algorithms for finding
separators of restricted classes of graphs. For example, if the graph is planar,
efficient algorithms exist for computing the separator set [8]. But in practice we
may know nothing about the graph being manipulated. In fact, deciding if a given
graph iss(n)-separable is NP-hard [4]. In this section we prove tight bounds for the
separability of random graphs. We use these bounds to study the expected behavior
of NA on arbitrary OPs.

5.1. A MODIFICATION OF NA

The separability resultsin this section assert that random graphs are not ‘small
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separable’. LeG(V, E) be the graph of a given OP. 8 is s(n) — separable,
thenV can be partitioned intd1, S, andV; such thafS| = s(n) and there is no

V1 — V, edge. Moreover|Vy| and |V;| are less thamn for somea < 1. If the
cardinality of the separator sef,itself is a constant fraction (or more) gf;| and

| V5|, then there is no gain in running all the levels of recursion of the algorithm
Nested_Annealing (given in section 4.2). It may suffice to stop the procedure at the
top level. In more precise terms, we can modify Nested_Annealing procedure in
the following way: Replace the instructions that call for computing the minimum
of C; andC, recursively, with instructions to compute these two minima using SA.

This modified NA will have an expected convergence time’é# [2M (V1D 1
MV = g (2M(Si+maxIViLIVaDy Here 2™ stands for the convergence time of
SA on an OP with: parameters.

If the separability of the given OP is not known we propose using this modified
NA together with the procedure (given in this section) for finding a separator in a
random graph. In this section we give expected bounds on the convergence time
of this modified NA on an arbitrary OP. The expected convergence of the original
Nested_Annealing will be nearly the same (upto a multiplicative constant) since
(as we prove here) a random graph is not ‘small separable’.

5.2. THE SEPARATOR THEOREMS

There are two popular models of random graphs[1]. The first consists of all graphs
with n vertices and (n) edges (for some specifiédd (n)), each such graph having
equal probability. A member in this model is denoted@g,, or simply G .
The second model consists of all graphs withodes in which each of the?/2
possible edges is chosen independently with probabilig member in this model
is denoted a§ .

There is a close connection betwe€r, and G, (with p = 6(M/n?)) (read
e.g., chapter Il of [1]). In this paper we assume the second model and derive tight
bounds on the separability &f,. Even though the results proved are for a general
graph, they are easily extendible to bipartite graphs. A random bipartite graph in
the second model is denoted@g(A, B, E) where bothA and B haven nodesX,
we letI"(X) stand for the neighbors &f.

Next we state and prove the separability results.

THEOREMG.1. Letp be > %’. Then, almost everg ,(V, E) has the following
property. IfX is any subset of nodes @, with % nodes, then, the s& = {y €
V—-X:T(y)NX = ®} has at Ieast’% nodes.

Proof.Let X C V be a set withn = % nodes. Ifg is any node inv — X, then,
Prob[I"(g)N X # ®] = 1— (1— p)'XI. This is the probability thak is a neighbor
of g.

qX will have a neighbor in each possibtesubset (for any) of V — X if and
only if X is a neighbor of at least — |X| — (k — 1) nodes inV — X. Thus the
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probability, P’, that X has a neighbor in each possiblesubset oft — X, is given
by

m—1

Pr<). <Z>[1 — (@ =

k=0

But (1— p)!X! = (1 — p)? > 1/(2¢). Therefore,

m—1 n 1 n—m—k n 1 n—2m
PR ()a) =G)02)
= k 2e m 2e

The probability,P, that there is at least or#é such thatX is a neighbor of each
m-subset of — X, is given by

S OABIC I

Using the fact thain is < .01n and the fact tha{) (for any smalle < 1)
is nearly equal to 2" (where H(.) is the binary entropy function defined by
H(e) = elog 2 + (1 — €) log 725), we get,

P <270, 0

COROLLARY 5.1. Almost evenG ,(V, E) is such thatV can be partitioned into
Vi1, S, V, in such a way that there is ng, — V, edge andV;| = % AlsoV; can be

chosen to banyset of% nodes.

The above corollary suggests the following simple procedure for finding a sep-
arator set forG ,(V, E). Take any set of 1/modes as/;, I'(V;) — V; as S, and
V — S — Vy asV,. The separator set so found will be such tsat- max| V4|, | Va|]
is no more tham — L. A similar result can be proven for a bipartite graph (proof is
along the same lines and hence omitted due to space constraints) which will imply
the following.

THEOREM 5.2. Modified NA converges in an expectéd2¥#=1/7)) time on an
arbitrary OP with n parameters, given that the graph of the OP is a memb@t, of

A good guess fop will be 8(M/n?) whereM is the number of edges in the
graph of the OP. This modified Nested Annealing is being currently implemented.
Results of the experiments will appear in a subsequent paper.

Next we show that the bound given in the above theorem is essentially tight. A
similar result has been proven in [1] (page 47, theorem 15).

THEOREM 5.3. Let[% — oo. For almost evenG ,(V, E), the following holds. If
X is any set obn nodes (for any), then the cardinality offy = {y e V — X :

['(y) N X = ®&}.is at the most(szlg;e) + 6]/—1;, for any constant > 0.
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Proof. Let X be a set ofsn nodes andr be any set ofy nodes inV — X.

Probability thatX has no neighbor i is (1 — p)¥%". Thus, the probabilityP, that
there is at least on¥ whoseTy has cardinalityy is given by

P < <n>(n—8n>(1_p)y5n
én y

< 2(2—5)n—yp8n loge )

If yis [(F5g;) + €17, then,P < 27</7. 0

Sloge

COROLLARY 5.2. If X is any set oBn nodes (wheré is a constant), therly
has cardinalityO (1/p).

Similar results hold for bipartite graphs as well. Details will appear in the final

version.

6. Conclusions

In this paper we have defined the convergence of SA to mean that an optimal global
state has been visited at least once by the Markov chain of the OP. This definition of
convergence is perhaps more appropriate from a computational point of view. We
gave a proof of convergence of an SA algorithm (for a general annealing schedule).
An important open problem will be to obtain tighter bounds for the convergence
time.

Nested Annealing is a variation of SA proposed in [12]. Nested Annealing has

been proven to be faster for small separable cost functions. We gave a simpler
proof of convergence for Nested Annealing. We also generalized the convergence
results of [12]. Further, we have analyzed the expected convergence time of NA on
an arbitrary problem. This was possible as a result of bounds we derived for the
separability of a random graph.
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