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Abstract. Simulated Annealing is a family of randomized algorithms used to solve many com-
binatorial optimization problems. In practice they have been applied to solve some presumably hard
(e.g., NP-complete) problems. The level of performance obtained has been promising [2,5,6,14]. The
success of this heuristic technique has motivated analysis of this algorithm from a theoretical point
of view. In particular, people have looked at the convergence of this algorithm. They have shown (see
e.g., [10]) that this algorithm converges in the limit to a globally optimal solution with probability
1. However few of these convergence results specify a time limit within which the algorithm is
guaranteed to converge (with some high probability, say). We present, for the first time, a simple
analysis of SA that will provide a time bound for convergence with overwhelming probability. The
analysis will hold no matter what annealing schedule is used. Convergence of Simulated Annealing
in the limit will follow as a corollary to our time convergence proof. In this paper we also look at
optimization problems for which the cost function has some special properties. We prove that for
these problems the convergence is much faster. In particular, we give a simpler and more general
proof of convergence for Nested Annealing, a heuristic algorithm developed in [12]. Nested An-
nealing is based on defining a graph corresponding to the given optimization problem. If this graph
is ‘small separable’, they [12] show that Nested Annealing will converge ‘faster’. For an arbitrary
optimization problem, we may not have any knowledge about the ‘separability’ of its graph. In this
paper we give tight bounds for the ‘separability’ of a random graph. We then use these bounds
to analyze the expected behavior of Nested Annealing on an arbitrary optimization problem. The
‘separability’ bounds we derive in this paper are of independent interest and have the potential of
finding other applications.

1. Introduction

1.1. BASIC IDEAS

Simulated Annealing (abbreviated as SA) is a heuristic algorithm proposed by
Kirkpatrick et al. [7] for solving combinatorial optimization problems like the trav-
elling salesman problem etc. This randomized algorithm was derived in analogy
with a physical system, say, a fluid. Annealing is used to bring a fluid to a low
energy state. The idea of SA is to use a procedure similar to annealing to find the
minimum value of a given cost function. SA makes use of the Metropolis algorithm
for computer simulation of annealing.

Annealing a substance involves melting the substance at a very high temperature
and then cooling it slowly. At each temperature sufficient time should be given for
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the system to reach a steady state. The lower the temperature, the higher the time
given should be. SA imitates this procedure by first identifying the correspondence
between the fluid and the optimization problem, and then using the Metropolis
algorithm to simulate each step of annealing.

Each basic step of Metropolis’ simulation amounts to perturbing the value of
one of the variables by a small amount. If the new configuration has a lower cost,
the configuration will be accepted. If the new configuration has a higher cost, even
then it will be accepted with certain probability.

SA algorithm is repeated application of the above basic step until no more
improvement in the cost function is possible. As evident, SA allows hill climbing
from local optima.

1.2. PREVIOUS WORK

Many researchers have attempted to analyze the performance of SA by assuming
a mathematical model for it. The most popular model assumed is a (time inhomo-
geneous) Markov chain. Typical convergence proof [10] involved proving that the
probability state vector of the Markov chain converges in the limit to an ‘optimal
stationary probability state vector’ with probability 1. An optimal stationary prob-
ability state vector is one in which the only non-zero entries correspond to globally
optimal states of the Markov chain. There are also results which compute the rate
of convergence of the probability state vector to the optimal vector. Such results
are extremely important from a theoretical point of view since they provide an
explanation for why SA works in practice.

However none of these convergence proofs gives a time bound for convergence.

1.3. CONTENTS OF THIS PAPER

This paper analyzes the worst case convergence time of SA. In particular, we show
that SA converges in timeM(n, d,D) with probability > (1− n−�(1)). Heren
is the number of states,D is the diameter, andd is the degree of the underlying
Markov chain.M(.) is a function to be specified later. By convergence we mean
that the Markov chain had been in a globally optimal state at least once. We don’t
require the state probability vector to converge to an optimum vector.

Since the objective in combinatorial optimization is to find the optimum value
of a given cost function, perhaps our definition of convergence is more appropriate
from a computational point of view. If we can keep track of the state with the
minimum cost visited so far by the Markov chain, our objective will be achieved.

We also show that faster convergence is possible in the case of cost functions
with some special properties. For cost functions which are ‘small separable’ faster
convergence has already been proved by Rajasekaran and Reif (see [12]). They call
their algorithm ‘Nested Annealing’ (abbreviated as NA). In fact we also consider
the same class of cost functions and give a simpler proof to the convergence of Nes-
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ted Annealing. Also their proof applies only to problems for which SA algorithm
converges in time polynomial in the number of states (of the corresponding Markov
chain), whereas our proof applies to any problem.

NA employs the following idea. Given any optimization problem, define a cor-
responding graph. If this graph is known to be ‘small separable’, then NA leads to
‘faster’ convergence. Numerous other algorithms have also been designed which
exploit the ‘small separability’ of the underlying graphs (see e.g., [8]). But, given
an arbitrary problem, we may not know how ‘separable’ its graph is. In this paper
we prove tight bounds on the ‘separability’ of a random graph. We make use of
these ‘separability’ bounds to analyze the expected behavior of NA on an arbitrary
optimization problem.

The ‘separability’ bounds derived here are of independent interest and have the
potential of finding other applications. For example, we could study the expected
behavior of the algorithms given in [8] on arbitrary graphs.

1.4. SOME DEFINITIONS AND PRELIMINARIES

SA is a class of randomized algorithms in the sense of Rabin [11], and Solovay &
Strassen [13]. Traditional approaches to introducing randomness in algorithms was
done assuming certain distribution for possible inputs. Average case analysis of any
algorithm will be performed based on this assumption on the inputs. This average
case performance measure can be totally misleading in the case of applications
where the input distribution assumed does not hold. To rectify this problem Ra-
bin [11], and Solovay and Strassen [13] proposed introducing randomness in the
algorithm itself. An algorithm employing this technique is called a ‘randomized
algorithm’.

To be more precise, a randomized algorithm is one which makes coin flips to
make certain decisions. A randomized algorithm will be shown to have a certain
performance measure with ‘high probability’ (this probability will be over the
space of all possible outcomes for coin flips made in the algorithm and not over
the space of all possible inputs).

We say a randomized algorithm has a resource (like time, space, etc.) bound of
Õ(f (n)) if there exists a constantc such that the resource used by the algorithm is
no more thancαf (n) on any input of sizen, with probability > (1− n−α).

An Optimization Problemis to find the minimum value of a given ‘cost func-
tion’ C(.) of n parametersp1, p2, . . . , pn, subject to some given constraints.

If X is any non-negative random variable with meanµ, Markov’s inequality
(see e.g., [3]) implies that Prob.[x > kµ] 6 1/k, for anyk > 0.

2. A Model for SA

In this section we state the mathematical model to be used for SA. Before doing
so, we give a description of the SA algorithm itself.
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Given a cost functionC(p1, p2, . . . , pn), aconfigurationor stateof the Optim-
ization Problem (abbreviated as OP) is defined to be an assignment of values to its
n parameters. ‘Neighbors’ of a given state are all those states which differ from the
given state only in the value of one parameter by a ‘small’ amount. ‘Temperature’
in the case of an OP is simply a control parameter which has the same units as that
of the cost function.

procedureAnneal(start_state, start_temperature);
while (not frozen)do

while (not steadystate)do
Generate a random neighbor of the current state;
Let1 = cost of old state− cost of the new state;
Accept the new state with probability min{1,exp)−1/T )},
T being the current temperature;

Update the temperature; steadystate= false;

In the above algorithm ‘frozen’ is a boolean variable that becomestrue when
no improvement in the given cost function has been observed in a ‘long’ time (say
during the past few temperatures). The boolean variable ‘steadystate’ becomestrue
when the system attains steady state at the given temperature.

Many schemes (also called ‘annealing schedules’) have been proposed to com-
pute the sequence of temperatures the system should go through. For example, the
temperature can be decreased by a constant factor each time. For other annealing
schedules see [10].

One can construct a directed graphG(V,E) corresponding to a given OP in the
following way: Nodes inG are simply the states of the OP and the edges going out
of any node (or state) will be the neighbors of this state. As the reader can easily
see, SA algorithm performs a random walk on this graph. State transition made at
any step is dependent only on the current state. Also for a given temperature, the
transition probabilities from out of any node are fixed. These facts suggest model-
ling SA as a Markov chain. At any given temperature SA can be modeled as a time
homogeneous Markov chain. But the transition probabilities can potentially change
with temperature. Thus the whole of SA can be modeled as a time inhomogeneous
Markov chain [10]. We assumeG is strongly connected (i.e., there is a directed
path fromi to j for any two nodesi andj in V ).

For any nodei in G, let N(i) be the set of neighbors ofi, and letC(i) be the
cost of statei. If we assume that when the Markov chain is in statei, each one
of its |N(i)| neighbors is equally likely to be generated next, then, the transition
probability from statei to statej at temperatureT , Pij (T ), is given by

Pij (T ) =
{

0 if j 6∈ N(i)&j 6= i
1
|N(i)| min(1,exp{(C(j)− C(i))/T }) if j ∈ N(i)
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and

Pii(T ) = 1−
∑
j∈N(i)

Pij (T )

We make use of this model to prove the convergence time of SA.

3. Convergence of SA

We say the SA algorithm has converged if the underlying Markov chain had been
in a globally optimal state at least once. This definition of convergence is different
from what other researchers have assumed. So far, only the convergence of the
probability state vector to an optimal vector has been considered (see e.g. [10]). Our
definition of convergence is more appropriate from a computational point of view,
since we are only interested in finding the minimum value of a given cost function.
Convergence as defined here guarantees that we will find the global minimum of
the given function.

In this section we give a time bound within the SA algorithm will converge.
Given a cost functionC(p1, p2, . . . , pn), letG(V,E) be its state graph (as defined
before). LetT be the minimum temperature that SA was ever in. Also let1 =
maxi∈V,j∈N(i){C(i)−C(J )}. Denote the degree and diameter ofG(V,E) by d and
D respectively.

Clearly, for anyi ∈ V , Pij (at any temperature) will be at least exp(−1/T )
if j ∈ N(i). We state a few crucial facts before we present and prove the main
theorem.

FACT 3.1. LetX be the state of a Markov chain at timet = t0. The probability that
a global minimum state is visited during the nextq steps (for anyq is dependent
only onX andq and not on the states visited before.

LEMMA 3.1. If X is any state inV , then the expected number of steps before a
global optimal state is visited starting fromX is 6 ( 1

d
exp(−1/T ))−D.

Proof.Let g be any global optimal state. Then there exists a directed path from
X to g inG(V,E) of lengthq 6 D. Let e1, e2, . . . , eq be the sequence of edges in
the path.

Clearly, probability thatG is visited starting fromX is at least the probability
that each one of the edgesei , 1 6 i 6 q is traversed in succession. The later
probability is at least[( 1

d
)exp(−1/T )]q > [( 1

d
)exp(−1/T )]D, (assuming that

each neighbor of a sate is equally likely to be generated next).
Therefore, probability thatg will ever be visited starting fromX is > [(1/d)

exp(−1/T )]D. This implies that the expected number of steps beforeg is visited is
6 [d exp(1/T )[D. 2
THEOREM 3.1. SA converges in time6 2k[d exp(1/T )]D, with probability
> (1− 2−k), no matter what the start state is.
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Proof. Let E = 2[d exp(1/T )]D. We prove that the probability of a global
optimal stateg not being visited inkE steps is6 2−k , by induction onk.

Induction Hypothesis. Irrespective of the start state, probability thatg is not
visited inkE steps is6 2−k .

Base case. Whenk = 1, for any start stateX, expected number of steps before
g is visited is 6 E/2 (using lemma 3.1). An application of Markov’s inequality
implies that the probability ofg not being visited starting fromX in E steps is
6 1/2.

Induction step. Assume the hypothesis for allk 6 (r − 1). We’ll prove the
hypothesis fork = r.

LetXE,X2E, . . . , X(r−1)E be the states of the Markov chain during time steps
E, 2E, . . . , (r − 1)E respectively. LetA be the event:g is not visited during the
firstE steps, andB be the event:g is not visited during the next(r − 1)E steps.

Now, probability thatg is not visited inrE steps,P , is given by

P = Prob.[B/A] × Prob.[A].
Using fact 3.1, Prob.[B/A] depends only on what state the Markov chain is in at
time stepE and the time duration(r − 1)E. And hence,

P = Prob.[A]
∑
i∈V

Prob.[B/XE = i] × Prob.[XE = i].

But, Prob.[A] is 6 1/2 and Prob.[B/XE = i] is 6 2−(r−1) for eachi ∈ V (using
the induction hypothesis). Therefore, we have,

P 6 1

2
2−(r−1) = 2−r . 2

COROLLARY 3.1. If 1,T , andd are assumed to be constants andD=θ(log|V |),
then, SA converges in time polynomial in|V | with probability > (1− 2−�(|V |)).

Observation. The above analysis is oblivious to the annealing schedule used.
Even if the system stays in the same temperature throughout, as long as enough
time is given, the system will converge.

The success of any heuristic technique depends on how good the input is. If the
heuristic is good on all possible inputs, then it will be termed an ‘exact algorithm’.
This fact is true in the case of SA also.

In practice, SA has been used to obtain ‘quasi optimal’ solutions by running
it for only a small amount of time (in comparison with the time bound given in
theorem 3.1). A plausible reason for this behavior is there are many quasi optimal
states (for a large fraction of all possible inputs) in the Markov chain and these
states are nearly uniformly distributed inG(V,E). If we have some knowledge of
how many quasi optimal states there are, and how they are distributed inG, (V,E),
we can make use of the above analysis technique to get tighter bounds on the
convergence time.
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Also, the above proof assumes that each neighbor of a state is equally likely to
be generated next. This is not a severe restriction. The analysis can be extended
easily even to the case where this assumption is invalid as we show now.

In some applications, it may be necessary to generate certain neighbors with
higher probability. Mitra et al. [10] assume that the probability of generating state
j from statei is g(i)

g(j)
whereg(i, j) is the ‘weight’ ofj as a neighbor ofi andg(i)

is a normalizing function such that
∑

j∈N(i) g(i, j) = g(i). Under this assumption
the state transition probabilities become:

Pij (T ) =
{

0 if j 6∈ N(i)&j 6= i
g(i,j)

g(i)
min(1,exp{(C(j)− C(i))/T }) if j ∈ N(i)

and

Pii(T ) = 1−
∑
j∈N(i)

Pij (T ).

If p = mini∈V,j∈N(i) g(i,j)g(i)
, for the above general model we can prove a convergence

result similar to the one given by Theorem 3.1. We can prove the following

THEOREM 3.2. SA algorithm converges in time6 2k[ 1
p

exp(1/T )]D with prob-

ability > (1− 2−k), no matter what the start state is.

4. Cost Functions with Special Properties

Rajasekaran and Reif [12] have shown that if the cost function being optimized
is ‘small separable’, then faster convergence can be obtained. They call their al-
gorithm ‘Nested Annealing’. In this section we give a simpler proof of convergence
of Nested Annealing. Their convergence proof holds only for problems for which
SA converges in time polynomial in the number of states of the OP. However, our
proof generalizes it to any problem. We make a few definitions before presenting
the proof.

4.1. DEFINITIONS

We say a graphG(V,E) with n nodes is ‘s(n)-separable’ if there exist constants
α < 1, β > 0 such thatV can be partitioned into three subsetsV1, S, V2. Also, no
vertex inV1 is adjacent to any vertex inV2, both|V1| and|V2| are less thanαn, and
|S| is less thanβs(n). Moreover, the induced subgraphs ofG onV1, and onV2 are
s(|V1|)-separable ands(V2)- separable, respectively.S will be referred to as ‘the
separator set’ or simply ‘the separator’. Intuitively, by eliminating (the nodes in)S

fromG we end up with two roughly equal disjoint subgraphs.
If C is a cost function onn parametersp1, p2, . . . , pn, we define ‘separability’

of C as follows. WriteC asC = C1+C2+· · ·+Ck, where eachCi is a product of



50 S. RAJASEKARAN

functions of the parameters. Call eachCi,16 i 6 k as a clause. Define a bipartite
graphGC(V,E) whose nodes are the parameters and the clauses. There is an edge
between a clause node and a parameter node if that parameter occurs in that clause.
GC is called the ‘graph ofC’. We sayC is s(n)-separable ifGC is.

An Example. The problem of CNF-satisfiability is: given a boolean formula
in conjunctive normal form,F , on n variables, we have to decide if there is an
assignment to the variables that will makeF true. The graph corresponding to this
problem will consist of nodes one for each variable and each clause. There is an
edge between a clause node and a variable node if and only if that variable occurs
in that clause.

Small separability (i.e., smalls(n)) of a cost function implies that by assigning
values to a small number of parameters we can obtain two independent subprob-
lems such that the parameters involved in one subproblem are disjoint from the
parameters of the other subproblem.

4.2. THE ALGORITHM

Given a cost functionC on then parametersp1, p2, . . . , pn, construct the graph
of C,GC(V,E). If GC is s(n)-separable, we can partitionV into V1, S, andV2 as
mentioned above.

In this section we assume each parameter is binary (i.e., can take on only two
possible values). The analysis we perform is applicable with some minor changes
to other cases as well. One way of computing the minimum value ofC is as follows.
For each possible assignment of values to parameters inS, find the minimum value
of C, and pick the minimum of these minima. Finding the minimum ofC under
a particular assignment forS, is easy now. We need to find the minimum of two
functionsC1 andC2 whereC1 involves only parameters fromV1 andC2 involves
only parameters fromV2.

LetG1(V1, E1) andG2(V2, E2) be the restrictions ofG onV1 andV2 respect-
ively. Finding the minimum ofC1 and C2 can be done recursively by finding
separators forG1 andG2 respectively.

At the top level, we are given a setS for which we need to find an ‘optimum’
assignment (an assignment that corresponds to a global minimum forC). We can
think of this as an OP on|S| parameters. There are thus 2|S| 6 2βs(n) states of the
OP. The cost of each state is the minimum ofC under that particular assignment to
S. Instead of considering each possible state of this OP, and computing the cost of
each state, we can run a Simulated Annealing algorithm on this OP with6 βs(n)
parameters.

SA algorithm, in practice, only visits a small fraction of all possible states of
the OP to come up with a quasi-optimal solution. Therefore, if we use SA on the
above OP with|S| parameters, the number of states visited will be much less than
2βs(n) and hence the run time of the overall recursive algorithm will be much less.
This is the whole idea behind Nested Annealing.
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Next we give a formal description of the algorithm followed by a simpler proof
of convergence.

procedureNested_Annealing(GC (V,E));
Find a separator setS for GC. LetV1, S, andV2 be the partition ofV .
Also letG1 andG2 be restrictions ofG onV1 andV2 respectively.
Find an optimal assignment forS by running an SA algorithm on these para-
meters. For each state of the corresponding Markov chain visited by SA we
need to compute the cost.
To compute this cost, we need to find minimum of two other functionsC1 and
C2 (see the discussion above). Each ofC1 andC2 involves 6 αn parameters.
Find these two minima recursively by finding separators forG1 andG2 re-
spectively.

Analysis. Let T (n) be the expected run time of Nested_Annealing to find a
global optimal solution on any OP withn parameters. To obtain an upper bound on
T (n), we need to know how many of the 2|S| states at the top level will be visited
(including repeated visits) by the corresponding SA algorithm, and on each state
visited the time needed to compute the cost of the state. Let 2M(n) stand for the
worst case run time of SA on any OP withn parameters. (In section 3 we have
given upper bounds on 2M(n)). Then, clearly, the number of states visited will be
no more than 2M(βs(n)).

Computing the cost of each state involves computing the minimum of two
other functions involving no more thanαn parameters each, accounting for a total
expected cost of6 2T (αn).

Thus, we have,

T (n) 6 2M(βs(n))2T (αn),

which solves to

T (n) 6 2
∑logn
i=1 M(βs(α

in)).

If s(n) is assumed to beO(nσ ) for someσ < 1, we have

T (n) 6 2γM(βs(n)) = 2O(M(βs(n))).

Hereγ 6 1
1−√α . Throughout we have used the fact that the expected value of the

sum of any random variables is the sum of the expected values of the individual
random variables.

LetL = 2γM(βs(n)). Probability that the run time of Nested_Annealing exceeds
kL is less than 1/km using Markov’s inequality. Thus we have the following

THEOREM 4.1. Nested_Annealing converges in time6 nα L with probability
> (1− n−α).

For problems withM(n) = O(n), we have the following
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COROLLARY 4.1. If M(n) is O(n), Nested_Annealing converges in time6
nα2O(s(n)) with probability > (1− n−α).

The above corollary has already been proven in [12].
We can strengthen theorem 4.1 in the following way. Probability that the conver-

gence time of Nested_Annealing exceeds 2L is 6 1/2. Makek logn independent
runs of the procedure and terminate each procedure after exactly 2L steps. Pick the
minimum of the minima found in the logn runs. Probability that none of the runs
finds the global minimum is6 2−k . Thus we have the following

THEOREM 4.2. Nested_Annealing converges in time6 2kL with probability
> (1− 2−k) (for anyk > 0).

A number of important problems like planar travelling salesman, planar satis-
fiability, etc. (which have been proven to be NP-complete) haves(n) = √n. For all
these problems Nested_Annealing converges in time 2O(M(β

√
n)), whereas SA has

a convergence time of 2O(M(n)).
Even though the above analysis gives the time needed to find the global optimal

value in the worst case, we can also make use of it to get estimates of time bounds
to obtain quasi optimal solutions. If 2M(n) is an estimate on the run time of SA to
obtain a quasi optimal solution of any OP withn parameters, then theorem 4.2 can
be interpreted as implying that for the same problem Nested_Annealing will run in
time 2O(M(βs(n))).

5. Separability of Random Graphs

All the algorithms that exploit the separability of the underlying graphs presuppose
that a separator is known for the given graph. There are algorithms for finding
separators of restricted classes of graphs. For example, if the graph is planar,
efficient algorithms exist for computing the separator set [8]. But in practice we
may know nothing about the graph being manipulated. In fact, deciding if a given
graph iss(n)-separable is NP-hard [4]. In this section we prove tight bounds for the
separability of random graphs. We use these bounds to study the expected behavior
of NA on arbitrary OPs.

5.1. A MODIFICATION OF NA

The separability resultsin this section assert that random graphs are not ‘small
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separable’. LetGC(V,E) be the graph of a given OP. IfGC is s(n) – separable,
thenV can be partitioned intoV1, S, andV2 such that|S| = s(n) and there is no
V1 − V2 edge. Moreover,|V1| and |V2| are less thanαn for someα < 1. If the
cardinality of the separator set,S itself is a constant fraction (or more) of|V1| and
|V2|, then there is no gain in running all the levels of recursion of the algorithm
Nested_Annealing (given in section 4.2). It may suffice to stop the procedure at the
top level. In more precise terms, we can modify Nested_Annealing procedure in
the following way: Replace the instructions that call for computing the minimum
of C1 andC2 recursively, with instructions to compute these two minima using SA.

This modified NA will have an expected convergence time of 2M(|S|)[2M(|V1|) +
2M(|V2|)] = O(2M(|S|+max[|V1|,|V2|])). Here 2M(n) stands for the convergence time of
SA on an OP withn parameters.

If the separability of the given OP is not known we propose using this modified
NA together with the procedure (given in this section) for finding a separator in a
random graph. In this section we give expected bounds on the convergence time
of this modified NA on an arbitrary OP. The expected convergence of the original
Nested_Annealing will be nearly the same (upto a multiplicative constant) since
(as we prove here) a random graph is not ‘small separable’.

5.2. THE SEPARATOR THEOREMS

There are two popular models of random graphs[1]. The first consists of all graphs
with n vertices andM(n) edges (for some specifiedM(n)), each such graph having
equal probability. A member in this model is denoted asGM(n) or simplyGM .
The second model consists of all graphs withn nodes in which each of then2/2
possible edges is chosen independently with probabilityp. A member in this model
is denoted asGp.

There is a close connection betweenGM andGp (with p = θ(M/n2)) (read
e.g., chapter II of [1]). In this paper we assume the second model and derive tight
bounds on the separability ofGp. Even though the results proved are for a general
graph, they are easily extendible to bipartite graphs. A random bipartite graph in
the second model is denoted asGp(A,B,E) where bothA andB haven nodesX,
we let0(X) stand for the neighbors ofX.

Next we state and prove the separability results.

THEOREM 5.1. Letp be > 100
n

. Then, almost everyGp(V,E) has the following
property. IfX is any subset of nodes ofGp with 1

p
nodes, then, the setTX = {y ∈

V −X : 0(y) ∩X = 8} has at least1
p

nodes.

Proof.LetX ⊂ V be a set withm = 1
p

nodes. Ifq is any node inV −X, then,

Prob.[0(q)∩X 6= 8] = 1− (1−p)|X|. This is the probability thatX is a neighbor
of q.
X will have a neighbor in each possiblek-subset (for anyk) of V − X if and

only if X is a neighbor of at leastn − |X| − (k − 1) nodes inV − X. Thus the
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probability,P ′, thatX has a neighbor in each possiblem-subset ofV −X, is given
by

P ′ 6
m−1∑
k=0

(
n

k

)
[1− (1− p)|X|]n−|X|−k.

But (1− p)|X| = (1− p)1/p > 1/(2e). Therefore,

P ′ 6
m−1∑
k=0

(
n

k

)(
1− 1

2e

)n−m−k
6 m

(
n

m

)(
1− 1

2e

)n−2m

.

The probability,P , that there is at least oneX such thatX is a neighbor of each
m-subset ofV −X, is given by

P 6
(
n

m

)
m

(
n

m

)(
1− 1

2e

)n−2m

.

Using the fact thatm is < .01n and the fact that
(
n

εn

)
(for any smallε < 1)

is nearly equal to 2H(ε)n (whereH(.) is the binary entropy function defined by
H(ε) = ε log 1

ε
+ (1− ε) log 1

(1−ε) ), we get,

P 6 2−0.1n. 2
COROLLARY 5.1. Almost everyGp(V,E) is such thatV can be partitioned into
V1, S, V2 in such a way that there is noV1− V2 edge and|V1| = 1

p
. AlsoV1 can be

chosen to beanyset of 1
p

nodes.

The above corollary suggests the following simple procedure for finding a sep-
arator set forGp(V,E). Take any set of 1/pnodes asV1, 0(V1) − V1 asS, and
V −S−V1 asV2. The separator set so found will be such that|S|+max[|V1|, |V2|]
is no more thann− 1

p
. A similar result can be proven for a bipartite graph (proof is

along the same lines and hence omitted due to space constraints) which will imply
the following.

THEOREM 5.2. Modified NA converges in an expectedO(2M(n−1/p)) time on an
arbitrary OP with n parameters, given that the graph of the OP is a member ofGp.

A good guess forp will be θ(M/n2) whereM is the number of edges in the
graph of the OP. This modified Nested Annealing is being currently implemented.
Results of the experiments will appear in a subsequent paper.

Next we show that the bound given in the above theorem is essentially tight. A
similar result has been proven in [1] (page 47, theorem 15).

THEOREM 5.3. Let 1
p
→∞. For almost everyGp(V,E), the following holds. If

X is any set ofδn nodes (for anyδ), then the cardinality ofTX = {y ∈ V − X :
0(y) ∩X = 8}. is at the most[( 2−δ

δ loge )+ ε] 1p , for any constantε > 0.
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Proof. Let X be a set ofδn nodes andY be any set ofy nodes inV − X.
Probability thatX has no neighbor inY is (1−p)yδn. Thus, the probability,P , that
there is at least oneX whoseTX has cardinalityy is given by

P 6
(
n

δn

)(
n− δn
y

)
(1− p)yδn

6 2(2−δ)n−ypδn loge.

If y is [( 2−δ
δ loge )+ ε] 1p , then,P 6 2−ε/p. 2

COROLLARY 5.2. If X is any set ofδn nodes (whereδ is a constant), then,TX
has cardinalityO(1/p).

Similar results hold for bipartite graphs as well. Details will appear in the final
version.

6. Conclusions

In this paper we have defined the convergence of SA to mean that an optimal global
state has been visited at least once by the Markov chain of the OP. This definition of
convergence is perhaps more appropriate from a computational point of view. We
gave a proof of convergence of an SA algorithm (for a general annealing schedule).
An important open problem will be to obtain tighter bounds for the convergence
time.

Nested Annealing is a variation of SA proposed in [12]. Nested Annealing has
been proven to be faster for small separable cost functions. We gave a simpler
proof of convergence for Nested Annealing. We also generalized the convergence
results of [12]. Further, we have analyzed the expected convergence time of NA on
an arbitrary problem. This was possible as a result of bounds we derived for the
separability of a random graph.
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